New States Above Charm Threshold

Estia Eichten Fermilab

- New Narrow States
- QCD Dynamics Near Threshold
- X(3872), Z(3930), X(3943), Y(3940),Y(4260), Y(4350)
- Issues and Opportunities

(with K. Lane and C. Quigg)

New Narrow States

√ Heavy-Light mesons:

$$D_s(2317)$$
 $J^P = 0^+$ BaBar(2003)

Chiral symmetry and HQS Coupling to decay channels

$$D_s(2460)$$
 $J^P = 1^+$ CLEO(2003)

... (2006)

✓ Quarkonium states below threshold:

equal masses:

$$h_c(3425)$$
 CLEO, E835 (2005)

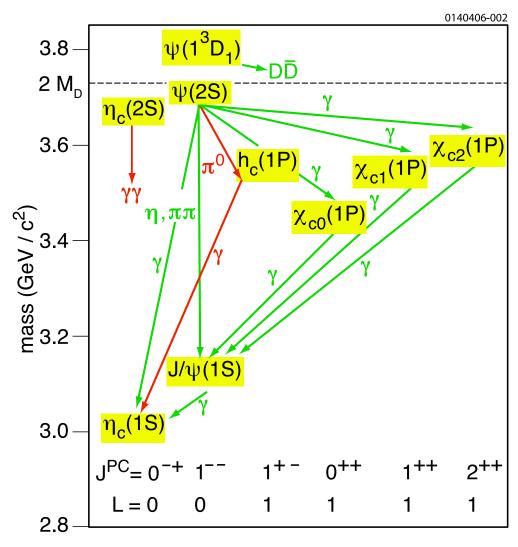
$$\eta_c'(3638)$$

unequal masses:

$$B_c(6276)$$

√ Thresholds and the X,Y,Z states:

Quarkonium Systems


Potential models:

masses
spin splittings
EM transitions
hadronic transitions
direct decays

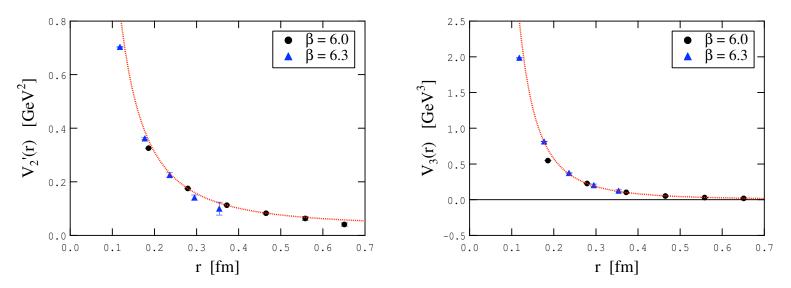
Lattice QCD:

masses
spin splittings
EM transitions

variety of approaches

FIGURE 8. Transitions among low-lying charmonium states. From Ref. [65].

$$V(r) = V^{(0)}(r) + \left(\frac{1}{m_1} + \frac{1}{m_1}\right) V^{(1)}(r) + O\left(\frac{1}{m^2}\right)$$


$$+ \left(\frac{\vec{s}_1 \vec{l}_1}{2m_1^2} - \frac{\vec{s}_2 \vec{l}_2}{2m_2^2}\right) \left(\frac{V^{(0)}(r)'}{r} + 2\frac{V^{(1)}(r)'}{r}\right) + \left(\frac{\vec{s}_2 \vec{l}_1}{2m_1m_2} - \frac{\vec{s}_1 \vec{l}_2}{2m_1m_2}\right) \frac{V^{(2)}(r)'}{r}$$

$$+ \frac{1}{m_1m_2} \left(\frac{(\vec{s}_1 \vec{r})(\vec{s}_2 \vec{r})}{r^2} - \frac{\vec{s}_1 \vec{s}_2}{3}\right) V^{(3)}(r) + \frac{\vec{s}_1 \vec{s}_2}{3m_1m_2} V^{(4)}(r)$$

Fine and hyper-fine splitting

Multi-level algorithm allows lattice determination of potentials with unprecedented precision

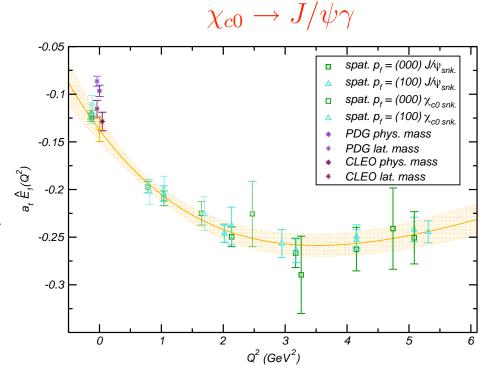
Y. Koma, M. Koma and H. Wittig [hep-lat/0607009] Quenched

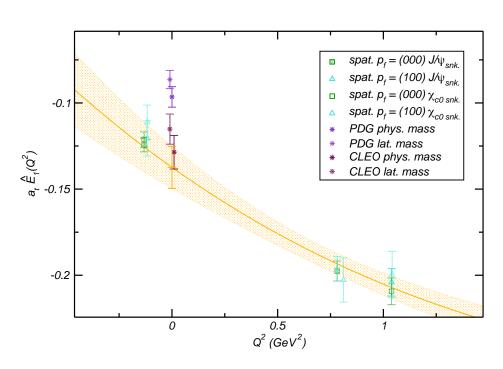
E. Eichten

Fermilab - Wine and Cheese - Oct. 13, 2006

Recent LQCD results

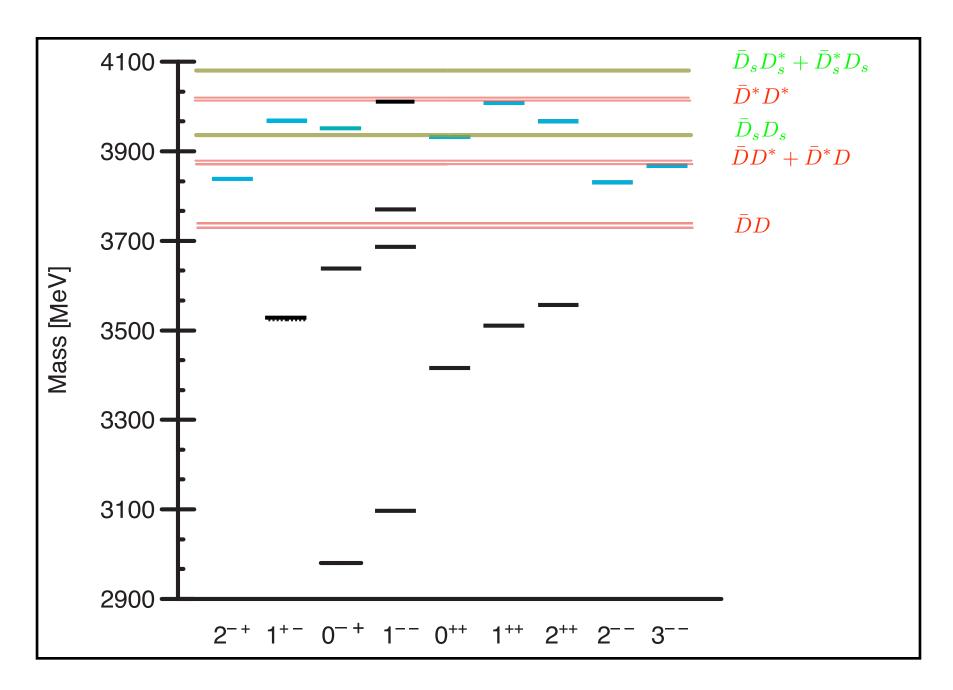
Dudek, Edwards, Richards hep-lat/0601137


[PR D73:074507 (2006)]


E1
$$\chi_{c0} \rightarrow J/\psi \gamma \ \chi_{c1} \rightarrow J/\psi \gamma \ h_c \rightarrow \eta_c \gamma$$
 β/MeV 542(35) 555(113) 689(133)
 ρ/MeV 1080(130) 1650(590) ∞
 $\Gamma_{\text{phys.mass}}^{\text{lat.mass}}/\text{keV}$ 288(60) 600(178) 663(132)
 $\Gamma_{\text{PDG}}^{\text{PDG}}/\text{keV}$ 232(41) 487(122) 601(55)
 $\Gamma_{\text{CLEO}}^{\text{PDG}}/\text{keV}$ 115(14) 303(44) -

M1	$J/\psi \to \eta_c \gamma$	M2	$\chi_{c1} \to J/\psi \gamma$
$\beta/{ m MeV}$	540(10)	$\beta/{\rm MeV}$	617(142)
$\Gamma_{\rm phys.mass}^{\rm lat.mass}/{\rm keV}$	$ \begin{array}{c} 1.61(7) \\ 2.57(11) \end{array} $	$\frac{M2}{E1}$	-0.199(121)
$\Gamma_{\phi\phi}^{\mathrm{PDG}}/\mathrm{keV}$	$ \begin{array}{c} 1.14(33) \\ 2.9(1.5) \end{array} $	expt.	$-0.002(^{+8}_{-17})$
	= (=:=)		

Promising but still work to do: quenched ground states extrapolations


$$Q^2 \to 0$$
 a $\to 0$

Above Threshold

Charmonium Spectrum

Nearby Thresholds

TABLE I: Thresholds for decay into open charm and nearby hidden-charm thresholds.

Channel	Threshold Energy (MeV)
$D^0ar{D}^0$	3729.4
D^+D^-	3738.8
$D^0 \bar{D}^{*0} \text{ or } D^{*0} \bar{D}^0$	3871.5
$ ho^0 J\!/\!\psi$	3872.7
$D^{\pm}D^{*\mp}$	3879.5
$\omega^0 J\!/\!\psi$	3879.6
$D_s^+ D_s^-$	3936.2
$D^{*0}\bar{D}^{*0}$	4013.6
$D^{*+}D^{*-}$	4020.2
$\eta' J\!/\!\psi$	4054.7
$f^0 J\!/\!\psi$	≈ 4077
$D_s^+ \bar{D}_s^{*-} \text{ or } D_s^{*+} \bar{D}_s^{-}$	4080.0
$a^0 J\!/\!\psi$	4081.6
$arphi^0 J\!/\!\psi$	4116.4
$D_s^{*+}D_s^{*-}$	4223.8

Hard to extract states in the threshold region in LQCD

Excited states:

$$C(t) \equiv \langle 0|\Phi(t)\Phi^{\dagger}(0)|0\rangle = \sum_{n} \langle 0|e^{Ht}\Phi(0)e^{-Ht}|n\rangle \langle n|\Phi^{\dagger}(0)|0\rangle$$
$$= \sum_{n} |\langle 0|\Phi(0)|n\rangle|^{2}e^{-(E_{n}-E_{0})t} = \sum_{n} A_{n}e^{-(E_{n}-E_{0})t},$$

To extract N states in same channel - use an NxN two point correlation function obtained from N independent operators

$$C_{\alpha\beta}(t) = \langle 0|\Phi_{\alpha}(t)\Phi_{\beta}^{\dagger}(0)|0\rangle$$

Find principal eigenvectors of

$$C(t_0)^{-1/2}C(t)C(t_0)^{-1/2},$$

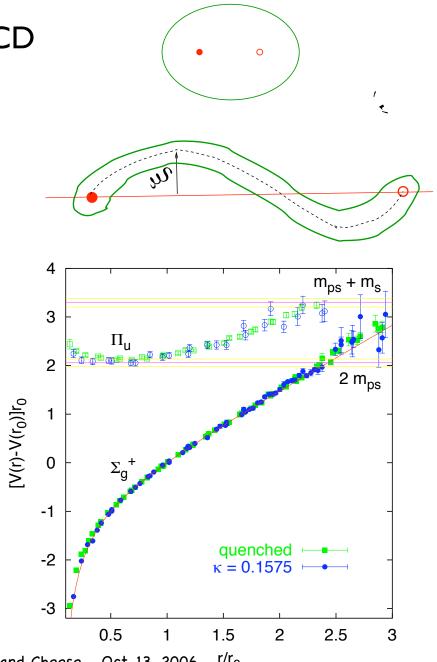
Strong decay channels -- resonances:

At finite volume (V) only discrete momentum values - Multimeson states have a discrete spectrum - Use V dependence to disentangle resonances from multibody states.

QCD Dynamics Near Threshold

- QCD dynamics is much richer than present phenomological models - Lattice QCD
- Gluon/String dynamics
- Light quark loops and strong decays

Heavy Quark Limit - Static Energy


Short distance: Perturbative QCD

singlet: $-4/3 \alpha_s / r$

octet: $2/3 \alpha_s / r$ gluelumps

Large distance: String σ r String behavour

Hybrids are not narrow even in heavy quark limit

Operators for excited gluon states

TABLE I: Operators to create excited gluon states for small $q\bar{q}$ separation R are listed. **E** and **B** denote the electric and magnetic operators, respectively. The covariant derivative **D** is defined in the adjoint representation [10].

gluon state	J	operator
$\Sigma_g^{+\prime}$	1	$\mathbf{R} \cdot \mathbf{E}, \mathbf{R} \cdot (\mathbf{D} \times \mathbf{B})$
Π_g	1	$\mathbf{R} imes \mathbf{E}, \mathbf{R} imes (\mathbf{D} imes \mathbf{B})$
Σ_u^-	1	$\mathbf{R}\cdot\mathbf{B}, \mathbf{R}\cdot(\mathbf{D} imes\mathbf{E})$
Π_u	1	$\mathbf{R} imes \mathbf{B}, \mathbf{R} imes (\mathbf{D} imes \mathbf{E})$
Σ_q^-	2	$(\mathbf{R} \cdot \mathbf{D})(\mathbf{R} \cdot \mathbf{B})$
$\frac{\Sigma_g^-}{\Pi_g'}$	2	$\mathbf{R} imes ((\mathbf{R} \cdot \mathbf{D})\mathbf{B} + \mathbf{D}(\mathbf{R} \cdot \mathbf{B}))$
$\frac{\Delta_g}{\Sigma_u^+}$ Π_u'	2	$(\mathbf{R} \times \mathbf{D})^i (\mathbf{R} \times \mathbf{B})^j + (\mathbf{R} \times \mathbf{D})^j (\mathbf{R} \times \mathbf{B})^i$
Σ_u^+	2	$(\mathbf{R} \cdot \mathbf{D})(\mathbf{R} \cdot \mathbf{E})$
Π_u'	2	$\mathbf{R} imes ((\mathbf{R} \cdot \mathbf{D}) \mathbf{E} + \mathbf{D} (\mathbf{R} \cdot \mathbf{E}))$
Δ_u	2	$(\mathbf{R} \times \mathbf{D})^i (\mathbf{R} \times \mathbf{E})^j + (\mathbf{R} \times \mathbf{D})^j (\mathbf{R} \times \mathbf{E})^i$

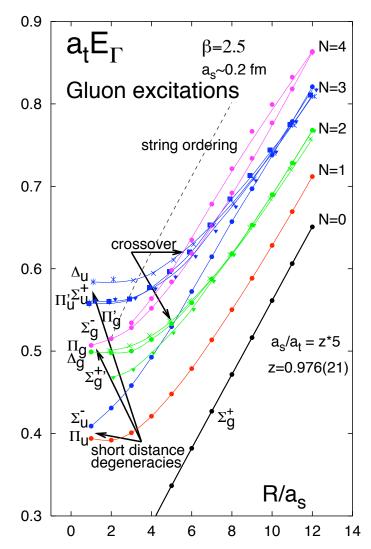


FIG. 2: Short-distance degeneracies and crossover in the spectrum. The solid curves are only shown for visualization. The dashed line marks a lower bound for the onset of mixing effects with glueball states which requires careful interpretation.

Juge, Kuti, Morningstar

Hybrid Potentials

PRL 82:4400 (1999); 90:161601 (2003)

Solve the Schoedinger Equation for each potential

$$-\frac{1}{2\mu}\frac{d^2u(r)}{dr^2} + \left\{\frac{\langle \boldsymbol{L}_{Q\bar{Q}}^2\rangle}{2\mu r^2} + V_{Q\bar{Q}}(r)\right\}u(r) = E\ u(r),$$

where

$$J = L + S$$
, $S = s_Q + s_{\bar{Q}}$, $L = L_{O\bar{Q}} + J_g$

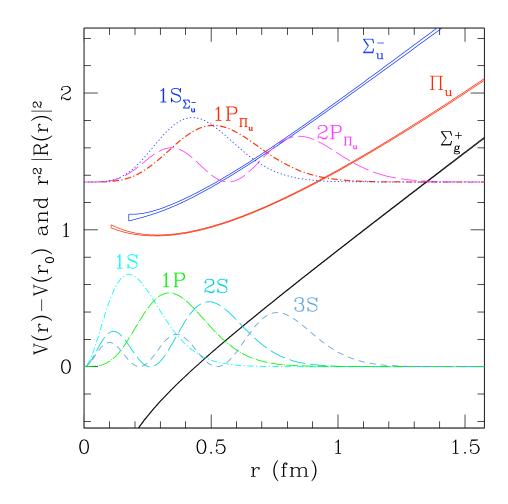
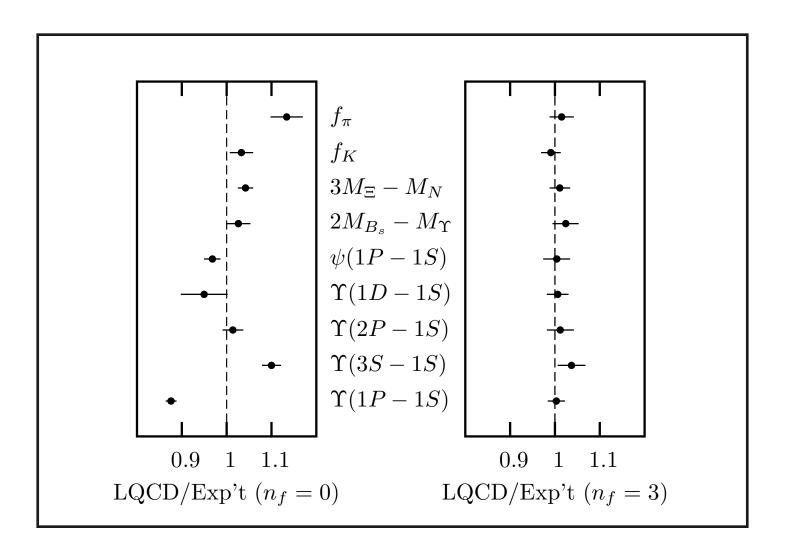
$$\langle \boldsymbol{L}_{O\bar{O}}^2 \rangle = L(L+1) - 2\Lambda^2 + \langle \boldsymbol{J}_g^2 \rangle$$

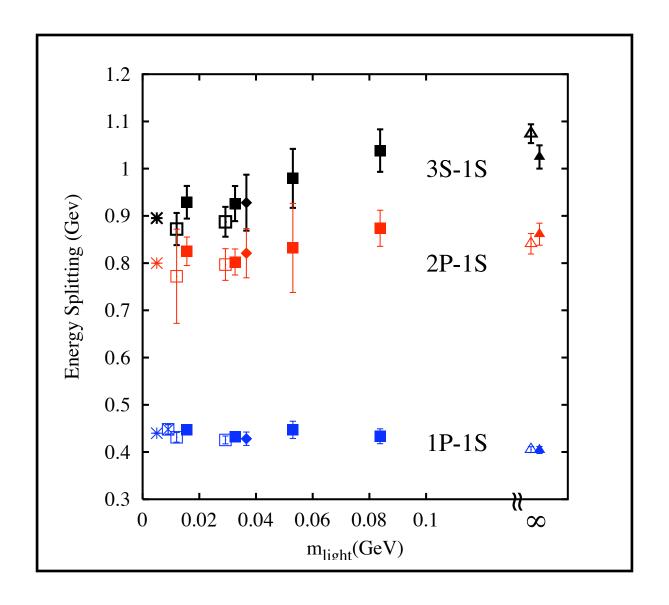
eigenstates

$$|LSJM;\lambda\eta\rangle + \varepsilon|LSJM;-\lambda\eta\rangle$$

where
$$\varepsilon = \pm 1$$
, $\Lambda = |\lambda|$

$$P = \varepsilon (-1)^{L+\Lambda+1}, \qquad C = \eta \varepsilon (-1)^{L+S+\Lambda}$$


Figure 2. Wavefunctions and potentials for the various hybrid/meson states.

Lattice QCD - light quark loops

C.T. H. Davies et al. [HPQCD, Fermilab Lattice, MILC, and UKQCD Collaborations], Phys. Rev. Lett. 92, 022001 (2004) [arXiv:hep-lat/0304004].

Dependence on light quark mass

Including Light Quark Effects

$$[\mathcal{H}_0 + \mathcal{H}_2 + \mathcal{H}_I]\psi = \omega\psi$$

 \mathcal{H}_0 .

NRQCD (without couplings light quarks)

$$\mathcal{H}_I \quad Q\bar{Q} \longrightarrow Q\bar{q} + q\bar{Q}$$

light quark pair creation

Cornell model (CCCM)

$$\mathcal{H}_I = \frac{3}{8} \sum_a \int :\rho_a(\mathbf{r}) V(\mathbf{r} - \mathbf{r}') \rho_a(\mathbf{r}') : d^3 r \, d^3 r'$$

Vacuum Pair Creation model (QPC)

$$\mathcal{H}_I = \gamma \int \bar{\psi} \psi(\mathbf{r}) d^3r$$

$$\mathcal{H}_2$$
 $Q\bar{q}+q\bar{Q}$

meson pair interactions

Lattice effort to extract couplings

$$C(t) = \begin{pmatrix} C_{QQ}(t) & C_{QB}(t) \\ C_{BQ}(t) & C_{BB}(t) \end{pmatrix}$$

$$= e^{-2m_{Q}t} \begin{pmatrix} \boxed{\boxed{\sqrt{n_{f}}}} \\ \sqrt{n_{f}} \boxed{\boxed{\boxed{\sqrt{n_{f}}}} -n_{f}} \\ \boxed{\boxed{\sqrt{n_{f}}} + \boxed{\boxed{\frac{2}{5}}} \boxed{\boxed{\frac{2}{5}}} \end{pmatrix}, (1)$$

transition amplitude

$$g = \frac{dC_{QB}(t)}{dt} \bigg|_{t=0} \frac{1}{\sqrt{C_{BB}(0)C_{QQ}(0)}}.$$

difficult to extract accurately

G.S. Bali, H. Neff, T. Düssel, T. Lippert and K. Schilling [SESAM Collaboration], *Phys. Rev. D* 71, 114513 (2005) [arXiv:hep-lat/0505012].

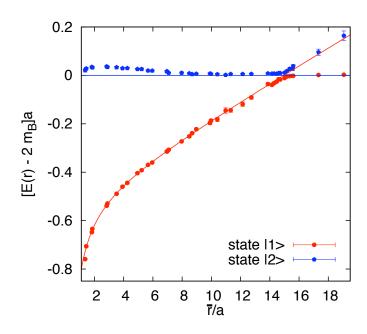


FIG. 13: The two energy levels, as a function of \overline{r} , normalized with respect to $2m_B$ (horizontal line). The curve corresponds to the three parameter fit to $E_1(\overline{r})$, Eqs. (80)–(82), for $0.2 \,\mathrm{fm} \leq \overline{r} \leq 0.9 \,\mathrm{fm} < r_c$.

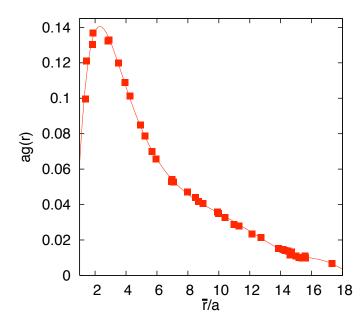


FIG. 18: The transition rate g between $|B\rangle$ and $|Q\rangle$ states, as a function of \overline{r} .

Coupling to open-charm channels

Phenomenological approach:

$$\mathcal{H}_{I} = \frac{3}{8} \sum_{a} \int : \rho_{a}(\mathbf{r}) V(\mathbf{r} - \mathbf{r}') \rho_{a}(\mathbf{r}') : d^{3}r \, d^{3}r'$$
$$\rho^{a} = \bar{c}\gamma^{0} t^{a} c + \bar{q}\gamma^{0} t^{a} q$$

Calculate pair-creation amplitudes,

Evaluate
$$<^3 D_2 |\mathcal{H}_I| D\bar{D}^{\star} >$$
, etc.

ELQ 2004

Solve coupled-state system

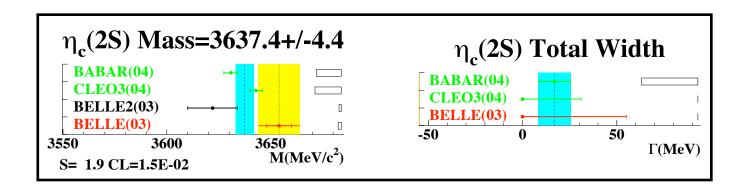
$$\begin{bmatrix} \psi = \psi_0 + \psi_2 \\ / \\ \bar{c}c & \bar{D}D \end{bmatrix}$$

solve
$$\left[\mathcal{H}_0 + \mathcal{H}_I^\dagger \frac{1}{\omega - \mathcal{H}_2 + i\epsilon} \mathcal{H}_I\right] \psi_0 = \omega \psi_0$$

for ω and ψ_0

Statistical Factors in Strong Decays

TABLE II: Statistical recoupling coefficients C, defined by Eq. D19 of Ref. [10], that enter the calculation of charmonium decays to pairs of charmed mesons. Paired entries correspond to $\ell = L - 1$ and $\ell = L + 1$.


	$\iota \circ \ell = L -$	$0 \ell = L - 1 \text{ and } \ell = L + 1.$					
	State	$Dar{D}$	$D\bar{D}^*$	$D^*\bar{D}^*$			
\Rightarrow	$^{-1}\mathrm{S}_0$	-: 0	-: 2	-: 2			
	$^3\mathrm{S}_1$	$-: \frac{1}{3}$	$-: \frac{4}{3}$	$-: \frac{7}{3}$			
	$^{3}\mathrm{P}_{0}$	1:0	0:0	$\frac{1}{3} : \frac{8}{3}$			
	$^3\mathrm{P}_1$	0:0	$\frac{4}{3}:\frac{2}{3}$	0:2			
	$^{1}\mathrm{P}_{1}$	0:0	$\frac{2}{3} : \frac{4}{3}$	$\frac{2}{3}:\frac{4}{3}$			
\Rightarrow	$^3\mathrm{P}_2$	$0: \frac{2}{5}$	$0: \frac{6}{5}$	$\frac{4}{3}:\frac{16}{15}$			
	$^3\mathrm{D}_1$	$\frac{2}{3}:0$	$\frac{2}{3}:0$	$\frac{4}{15}:\frac{12}{5}$			
	$^3\mathrm{D}_2$	0:0	$\frac{6}{5} : \frac{4}{5}$	$\frac{\frac{4}{15}}{\frac{2}{5}} : \frac{\frac{12}{5}}{\frac{8}{5}}$			
	$^{1}\mathrm{D}_{2}$	0:0	$\frac{4}{5} : \frac{6}{5}$	$\frac{4}{5}:\frac{6}{5}$			
\Rightarrow	$^3\mathrm{D}_3$	$0: \frac{3}{7}$	$0: \frac{8}{7}$	$\frac{8}{5}:\frac{29}{35}$			
	$^3\mathrm{F}_2$	$\frac{3}{5}:0$	$\frac{4}{5} : 0$ $\frac{8}{7} : \frac{6}{7}$	$\frac{11}{35}:\frac{16}{7}$			
	$^3\mathrm{F}_3$	0:0	$\frac{8}{7} : \frac{6}{7}$	$\frac{4}{7}: \frac{10}{7}$			
	$^1\mathrm{F}_3$	0:0	$\frac{6}{7}: \frac{8}{7}$	$\frac{6}{7}: \frac{8}{7}$			
	$^3\mathrm{F}_4$	$0: \frac{4}{9}$	$0: \frac{10}{9}$	$\frac{12}{7}: \frac{46}{63}$			
	$^3\mathrm{G}_3$	$\frac{4}{7}:0$	$\frac{6}{7}:0$	$\frac{22}{63}:\frac{20}{9}$			
	$^3\mathrm{G}_4$	$\stackrel{\prime}{0}:0$	$\frac{10}{9}:\frac{8}{9}$	$\frac{2}{3} : \frac{4}{3}$			
	$^{1}\mathrm{G}_{4}$	0:0	$\frac{8}{9}:\frac{10}{9}$	$\frac{8}{9} : \frac{10}{9}$			
	$^3\mathrm{G}_5$	$0:\frac{5}{11}$	$0: \frac{12}{11}$	$\frac{16}{9} : \frac{67}{99}$			
	~ 0	· 11	· 11	9 . 99			

Effects on the spectrum

Coupling to virtual channels induces spin-dependent forces in charmonium near threshold, because $M(D^*) > M(D)$

	State	Mass	Centroid	Splitting (Potential)	Splitting (Induced)
	$1^{1}S_{0}$ $1^{3}S_{1}$	$2979.9^a \ 3096.9^a$	3067.6^b	$-90.5^{e} +30.2^{e}$	$+2.8 \\ -0.9$
\Rightarrow	$1^{3}P_{0}$ $1^{3}P_{1}$ $1^{1}P_{1}$ $1^{3}P_{2}$	3415.3^{a} 3510.5^{a} 3524.4^{f} 3556.2^{a}	3525.3^c	-114.9^{e} -11.6^{e} $+0.6^{e}$ $+31.9^{e}$	+5.9 -2.0 $+0.5$ -0.3
\Rightarrow	$2^{1}S_{0} \ 2^{3}S_{1}$	3638^{a} 3686.0^{a}	3674^b	$-50.1^{e} +16.7^{e}$	$+15.7 \\ -5.2$
⇒ ⇒	$1^{3}D_{1}$ $1^{3}D_{2}$ $1^{1}D_{2}$ $1^{3}D_{3}$	3769.9^{a} 3830.6 3838.0 3868.3	$(3815)^d$	$-40 \\ 0 \\ 0 \\ +20$	-39.9 -2.7 $+4.2$ $+19.0$
	$2^{3}P_{0}$ $2^{3}P_{1}$ $2^{1}P_{1}$ $2^{3}P_{2}$	3881.4 3920.5 3919.0 3931^g	$(3922)^d$	$ \begin{array}{r} -90 \\ -8 \\ 0 \\ +25 \end{array} $	$+27.9 \\ +6.7 \\ -5.4 \\ -9.6$
	$3^{1}S_{0}$ $3^{3}S_{1}$	3943^{h} 4040^{a}	$(4015)^i$	$-66^{e} + 22^{e}$	$-3.1 \\ +1.0$

Mass shifts:

$$M(\eta') = 3637.7 \pm 4.4$$

Hyperfine splitting:

Normalize to

Observed

Shift

$$M(\psi') - M(\eta'_c) = 32\pi\alpha_s |\Psi(0)|^2 / 9m_c^2$$
 $M(J/\psi) - M(\eta_c) = 117 \text{ MeV}$
 $M(\psi') - M(\eta'_c) = 67 \text{ MeV}$
 $(48.3 \pm 4.4) \text{ MeV}$
 $20.9 \text{MeV} \implies \text{Agrees}$

Modified State Properties

Mixing

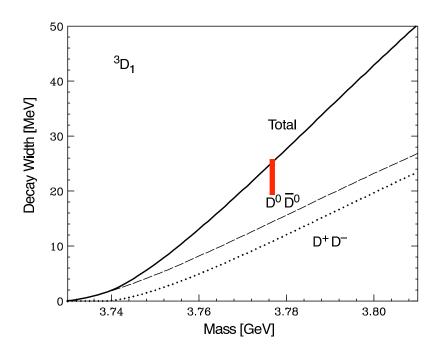
```
\begin{split} &\Psi(1^{3}\mathrm{S}_{1}) = 0.983 \, |1^{3}\mathrm{S}_{1}\rangle - 0.050 \, |2^{3}\mathrm{S}_{1}\rangle - 0.009 \, |3^{3}\mathrm{S}_{1}\rangle + \dots; \, 96.8\% (c\bar{c}) \\ &\Psi(1^{3}\mathrm{P}_{1}) = 0.914 \, |1^{3}\mathrm{P}_{1}\rangle - 0.075 \, |2^{3}\mathrm{P}_{1}\rangle - 0.015 \, |3^{3}\mathrm{P}_{1}\rangle + \dots; \, 84.1\% (c\bar{c}) \\ &\Psi(1^{3}\mathrm{D}_{2}) = 0.754 \, |1^{3}\mathrm{D}_{2}\rangle - 0.084 \, |2^{3}\mathrm{D}_{2}\rangle - 0.011 \, |3^{3}\mathrm{D}_{2}\rangle + \dots; \, 57.6\% (c\bar{c}) \end{split}
```

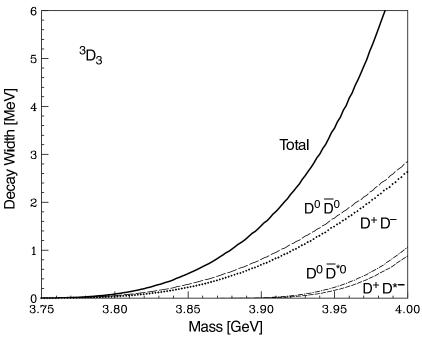
- Isospin breaking
 P wave decay 6%
- Radiative Transitions

Decays into open charm

ψ"(3770) width agrees with experiment

$$^{3}D_{2}$$
 $^{1}D_{2}$


No strong decays below


$$D\bar{D}^* + \bar{D}D^*$$
 threshold

 3D_3 decay width small search in $D\bar{D}$ channel

All remaining ID states are narrow

How to produce these states?

The XYZ States

```
X(3872)
                                                                          Belle, August 2003
   decays into J/\psi \ \pi^+\pi^-, \ J/\psi \ \pi^+\pi^-\pi^0, \ J/\psi \ \gamma, \ D^0\bar{D}^0 \ \pi^0
Y(3940)
                                                                         Belle, August 2004
   decays into J/\psi \omega
Y(4260)
                                                                           BaBar, June 2005
   decays into e^+e^-, J/\psi \ \pi^+\pi^-, J/\psi \ \pi^0\pi^0, J/\psi \ K^+K^-
X(3943)
                                                                            Belle, July 2005
   decays into D\bar{D}^*
Z(3930)
                                                                            Belle, July 2005
   decays into \gamma\gamma, DD
Y(4350)
                                                                            BaBar, June 2006
   decays into e^+e^-, \psi' \pi^+\pi^-
```

Basic Questions in Charm Threshold Region:

- •Is it a new state?
- •Charmonium or not?

Including light quark and string effects seems to blur the distinction between charmonium and molecules, hybrids, etc.

Not true for narrow states near thresholds.

A molecular or hybrid state exists only if an addition narrow state is seen in a given channel.

Purely counting states.

Levinson's theorem Schwinger

•If not what?

Z(3930)

Belle observes the Z(3930) in $\Upsilon\Upsilon$ production

Phys. Rev. Lett. 96, 082003 (2006)

$$J^{PC} = 0^{++} \text{ or } 2^{++}$$

Mass =
$$3929 \pm 5(stat) \pm 2(sys)$$
 MeV
Width = $29 \pm 10(stat) \pm 2(sys)$ MeV
Decay mode $\overline{D}D$

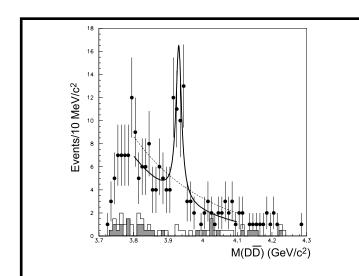
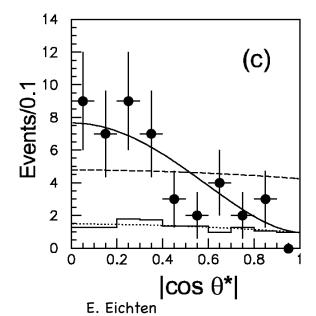



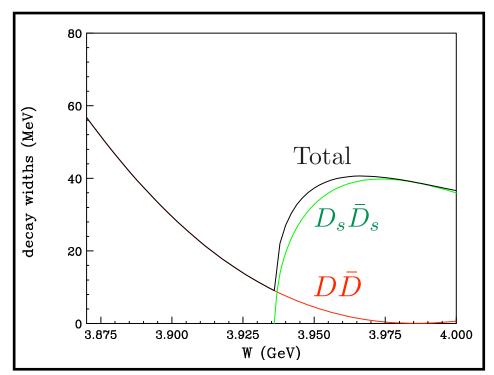
FIG. 3: The sum of the $M(D\bar{D})$ invariant mass distributions for all four processes. The curves show the fits with (solid) and without (dashed) a resonance component. The histograms show the distribution of the events from the D-mass sidebands (see the text).

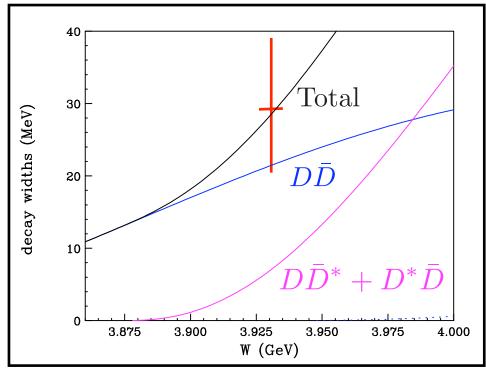
DD angular distribution favors J=2

2P States

$$2^{3}P_{0}$$

Surprisingly narrow width - but | = 0 disfavored


$$\checkmark$$
 2 $^{3}P_{2}$


model
$$\Gamma = 29 \; \mathrm{MeV}$$

$$\frac{D\bar{D}^* + D^*\bar{D}}{D\bar{D}} = 0.32$$

$$\frac{D^{+}\bar{D}^{-}}{D^{0}\bar{D}^{0}} = 0.95 \qquad \qquad 0.74 \pm 0.43 \pm 0.16 \\ \text{exp}$$

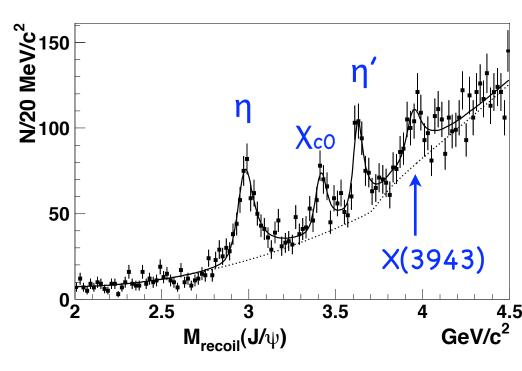
Z(3930) likely χ'_{c2}

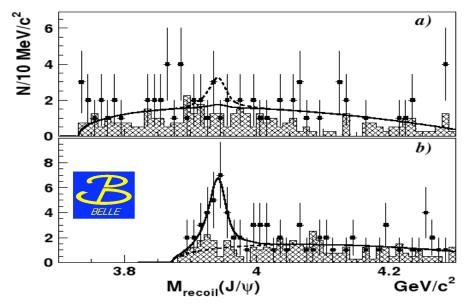
X(3943)

Belle [hep-ex/0507019]

Belle observes the X(3943) in recoil against the J/ψ

 $Mass = 3936 \pm 14 \text{ MeV}$


Width = 39 ± 26 MeV


 $M(\psi(4040) - X(3943))$ $\approx 100 \text{ MeV}$

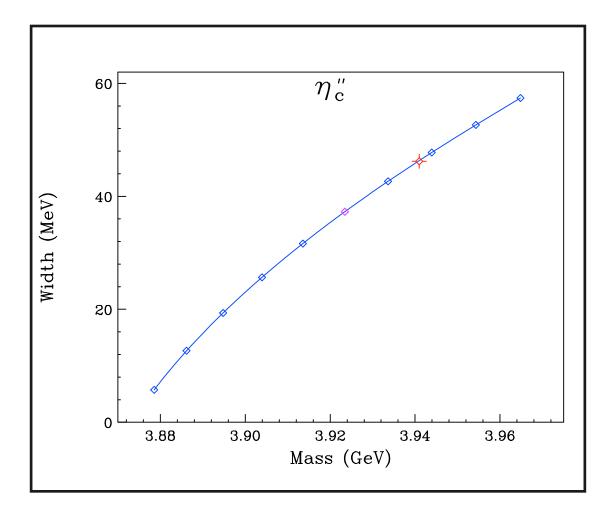
Large

 $BR(D\bar{D}) < 41\% @ 90\%cl$

 ${\rm BR}(D\bar{D}^*+D^*\bar{D})>45\% @ 90\% cl$ Not a 3P_0 state Likely the $\eta_{\rm C}^{\prime\prime}$ state, but

Coupled Channels Results for η_c''

Γ≈ 50 MeV


3S Spin Splitting increased

Requires bare splitting: 88 Mev

To check:

Extract 3³S₁ pole from CCC model of ΔR .

√ No improvement

Including DD_P channels:

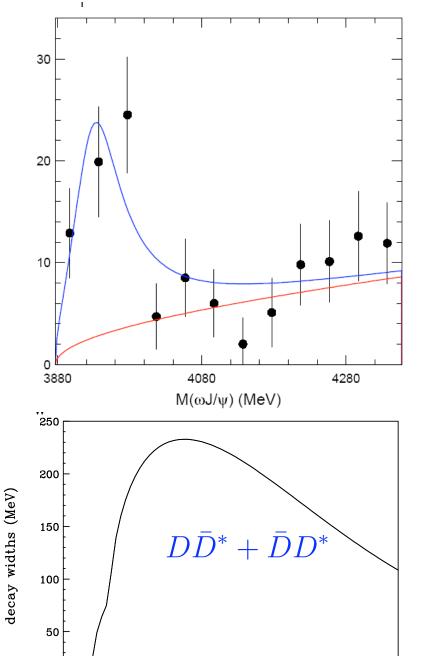
Expected to add significant spin splitting

Y(3940)

Belle observes the Y(3940) in B decays to K ω J/ ψ

 $Mass = 3940 \pm II MeV$

Width = 92 ± 24 MeV


Decay mode seen: ω J/ψ

 $2^{3}P_{1}$? Decay width versus mass

Not a good fit - mass, width, modes

Y(3940) needs confirmation

Belle [PRL94, 182002 (2005)]

3.875

3.900

3.925

W (GeV)

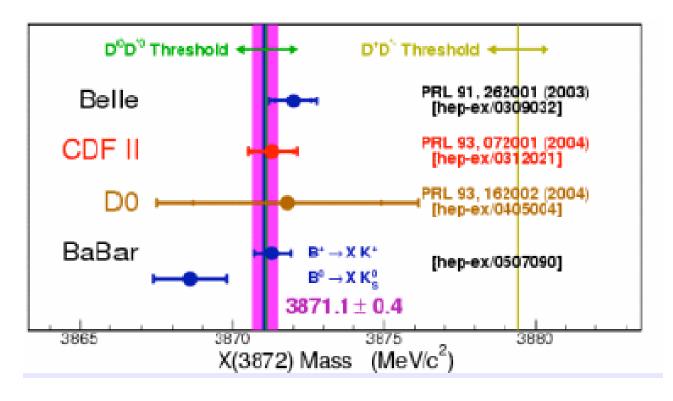
3.950

3.975

-30-

X(3872)

Production:


Belle and BaBar -Produced in B decays.

CDF and DO - Significant prompt production.

Mass

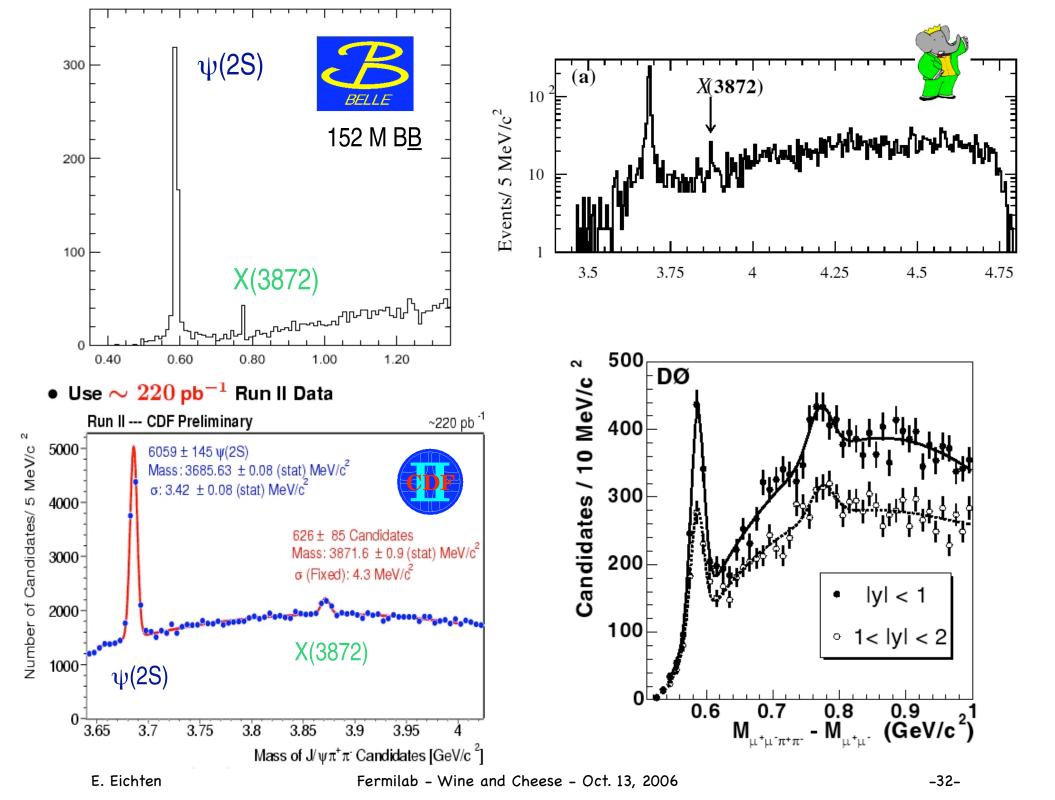
 $3.871.2 \pm 0.5 \text{ MeV}$

DD* thresholds:

 $3.877.7 \pm 0.8 \text{ MeV}$

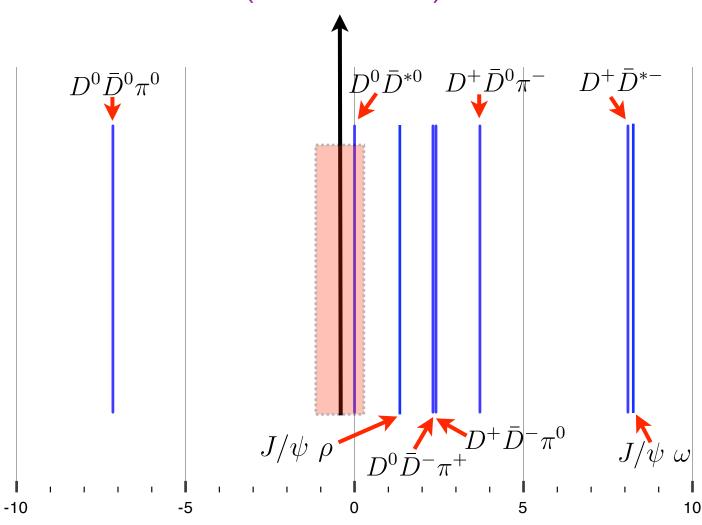
PDG06

$$M(X) - M(D^0) - M(\bar{D}^{*0}) = -0.4 \pm 0.7 \text{ MeV}$$


CLEO Preliminary More precise D masses

Width < 2.3 MeV @ 90 % c.l. Belle

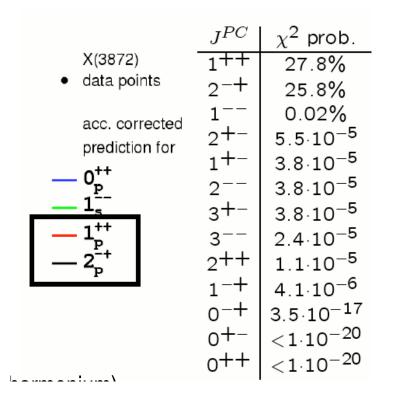
Decays:

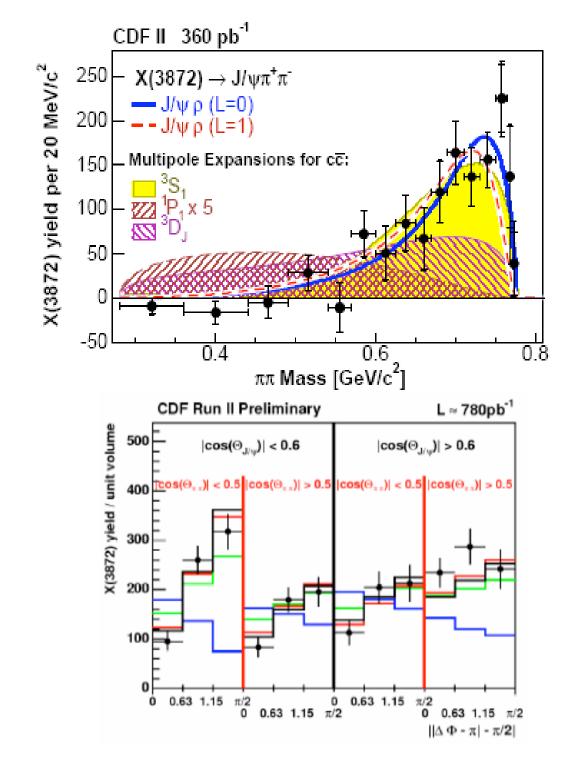

$$\pi^+\pi^-J/\psi$$

 $\pi^+\pi^-J/\psi$ discovery mode

Detailed look at nearby thresholds

 $X(3871.2 \pm 0.5)$




$$M(X) - M(D^0) - M(\bar{D}^{*0})$$
 (MeV)

π π mass distribution fits ρ J/ψ (L=0)

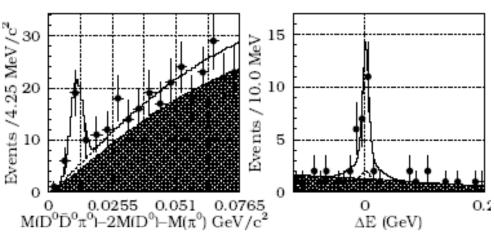
Production rates

$$J^{\mathrm{PC}} = 1^{++}$$
 Strongly favored

Other decay modes:

$$\frac{X(3872) \to "\omega" J/\psi}{X(3872) \to \gamma J/\psi} \approx 1.0 \pm 0.4 \pm 0.3$$

Belle


$$\frac{{\rm X}(3872) \to \gamma J/\psi}{{\rm X}(3872) \to \pi^+\pi^- J/\psi} = 0.19 \pm 0.07$$

Belle + BaBar

$\frac{{\rm X}(3872) \to \pi^0 D^0 \bar{D}^0}{{\rm X}(3872) \to \pi^+ \pi^- J/\psi} \approx 10$

$$M = 3875.4 \pm 0.7 ^{+0.7}_{-1.7} \pm 0.8 \text{MeV}$$

Belle

DD* "Binding Energy?":

$$M-(m_{D0}+m_{D*0}) = +4.3 \pm 0.7^{+0.7}_{-1.7}$$
 MeV

Is the X(3872) the 2^3P_1 charmonium state?

Mass too low:

Setting the χ'_{c2} to the observed mass and including the coupled channel effects: $M(\chi'_{c1}) = 3920 \text{ MeV}$

Lattice - $M(\chi'_{c1}) = 4060 (70) \text{ MeV (quenched)}$ [Chen hep-lat/0006019]

Radiative transitions:

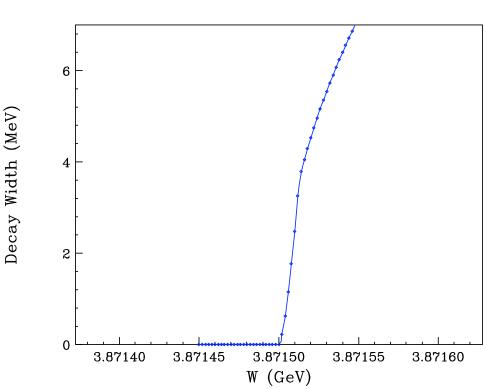
50% admixture of $D^0\overline{D^0}$

$$\frac{\mathrm{X}(3872) \to \gamma \psi'}{\mathrm{X}(3872) \to \gamma J/\psi} \approx 0.6$$

Belle + BaBar

$$\frac{X(3872) \to \gamma J/\psi}{X(3872) \to \pi^{+}\pi^{-}J/\psi} = 0.19 \pm 0.07$$

TABLE VI: E1 radiative transition rates. Partial Width (keV)


$$2^{3}P_{1}(3872) \rightarrow 1^{3}D_{1} \gamma(101) \ 1^{3}D_{2} \gamma(41)$$

model 1.05 0.2
 $2^{3}P_{1}(3872) \rightarrow J/\psi \gamma(698) \ \psi' \gamma(182)$
model 34.7 21.1

Exp ratio too small

Induced isospin breaking only 8%.

Decay width grows rapidly above threshold

$$D^0 \bar{D}^{0*} + D^{0*} \bar{D}^0$$

So is the X(3872) the 2^3P_1 charmonium state?

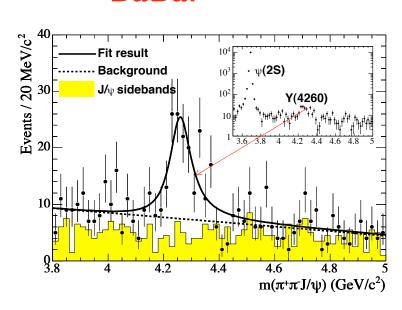
NO (with caveats)

general form

$$|X| > = cos(\alpha)|c\bar{c}(2^3P_1)| > + sin(\alpha)|D^0\bar{D}^{0*} + D^{0*}\bar{D}| >$$

not ruled out

Y(4260)


Production:

Seen by BaBar in ISR production

$$J^{PC} = 1^{--}$$

Exp	Mass(MeV)	Width(MeV)
BaBar	4259±8 ⁺²	88±23 ⁺⁶
CLEO	4283 ⁺¹⁷ ₋₁₆ ±4	$70^{+40}_{-25} \pm 5$
Belle	4295±10 ⁺¹¹ ₋₅	133±26 ⁺¹³

BaBar

Confirmed by CLEO and Belle

small ΔR

Decays: $\pi^+\pi^-J/\psi$ $\pi^0\pi^0J/\psi$

$$K^+K^-J/\psi$$

discovery mode

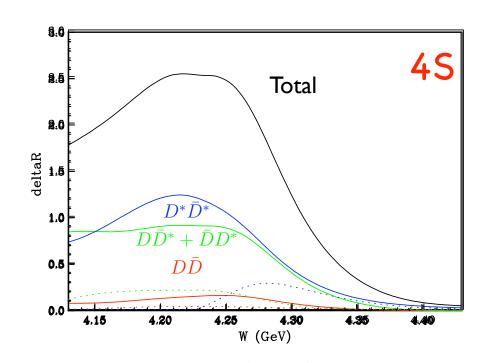
CLEO

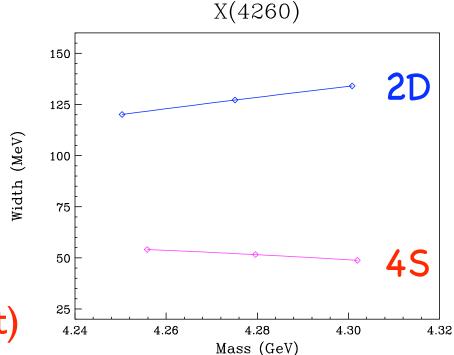
consistent with isospin zero

A charmonium state?

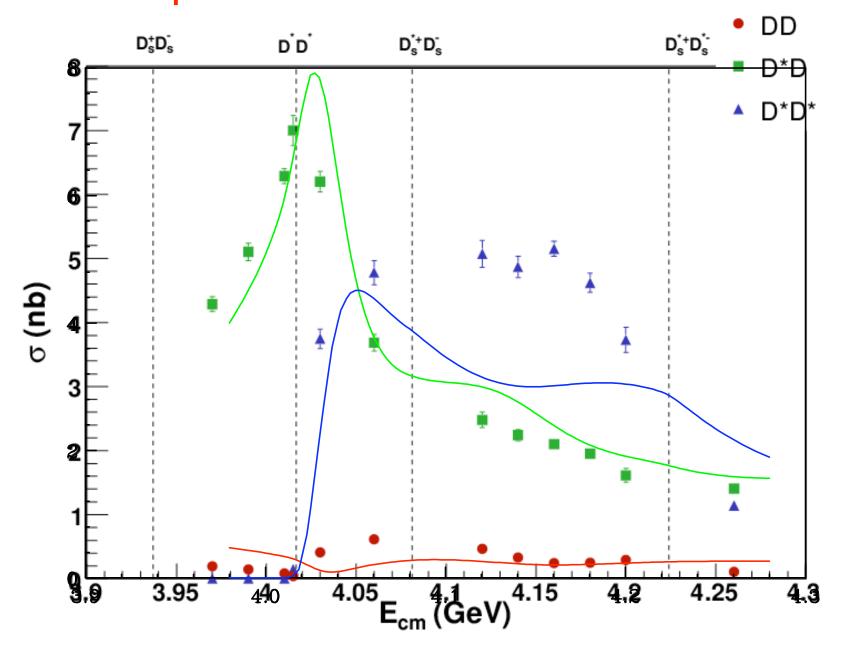
4S state:

 $\Delta R \sim 2.5$ for 4S at the Y(4260) mass

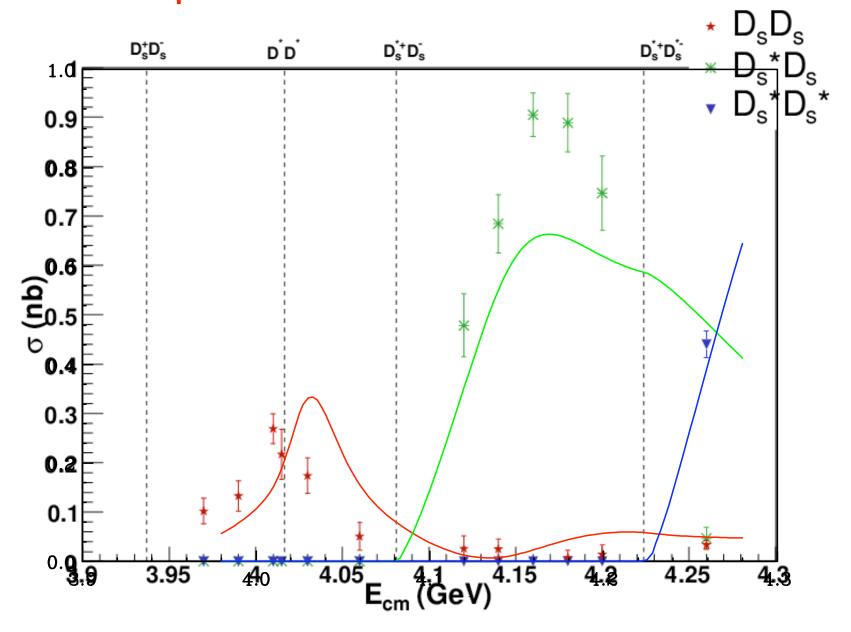

Ruled out


2D state:

Decay widths


Already have the 2D (4160):

Ruled out (model dependent)



CLEO-c hep-ex/0606016

Model - Cornell Coupled Channel

CLEO-c hep-ex/0606016

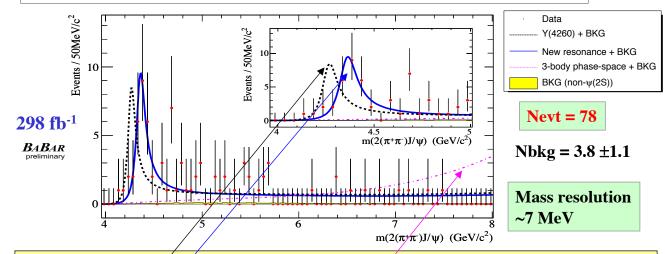
Model - Cornell Coupled Channel

Y(4350)

Seen by BaBar in the decay mode

$$\pi^+\pi^-\psi(2S)$$

Mass:


 $4354 \pm 16 \text{ MeV}$

Width:

 $106 \pm 9 \text{ MeV}$

...but it's not the Y(4260)...

Fit to $m(2(\pi^+\pi^-)J/\psi)$ to avoid combinatorics. Try S-wave 3-body phase space, old and new resonance, cannot find a good fit

Incompatible with Y(4260), ψ (4415), or S-wave 3-body phase-space production

Assuming a single resonance \Rightarrow mass=(4354±16) MeV/c², Γ =(106±19) MeV (statistical errors only) still **insufficient** to fully describe the spectrum (χ^2 -prob = 1.4 ×10⁻⁴) compared with χ^2 -prob = 1.6 ×10⁻⁸ for Y(4260), 4.2 ×10⁻⁹ for ψ (4415)

QWG06, June 27 2006

Shuwei YE

21

Confirmation needed

X,Y, Z's Status Table

Observed	State	JPC	$c\overline{c}$	Alternative
Many	X (3872)	++	$2^{3}P_{1}$ \checkmark	D D* Molecule
Belle	Z (3934)	2++	$2 {}^{3}P_{2} \checkmark \checkmark \checkmark$	
Belle	Y (3940)	JP+	?	
Belle	X (3943)	0-+	$3 {}^{1}S_0 \checkmark \checkmark$	
Babar CLEO Belle	Y (4260)	 	$\begin{array}{ccc} 4 & ^3S_1 & \times \\ 2 & ^3D_1 \end{array}$	Hybrid
Babar	Y (4350)	I	$4 {}^{3}S_{1} \times 2 {}^{3}D_{1}$?

Issues and Opportunities

Options for X(3872) (225 papers)

$D^0\bar{D}^{0*}$ molecule:

Tornqvist (8-03, 2-04); Close and Page (9-03); Pakvasa and Suzuki (9-03); Voloshin (9-03, 8-04, 9-05, 5-06); Wong (11-03); Braaten and Kusunoki (11-03; 2-04; 12-04, 6-05, 7-05, 9-06); Swanson (11-03, 6-04, 10-04); Braaten, Kusunoki, and Nussinov (4-04); Kalashnikova (6-05); AlFiky, Gabbiani, and Petrov (6-05); El-Hady (3-06), Chiu and Hsieh (3-06); Zhang, Chiang, Shen and Zou (4-06); Melikhov and Stech (6-06)

threshold cusp:

Bugg (10-04)

tetraquark: $(\bar{c}\bar{q})_3(qc)_{\bar{3}}$

Vijande, Fernandez, and Valcarce (7-04); Maiani, Piccinini, Polosa, and Riquer (12-04); Ishida, Ishida and Maeda (9-05); Ebert, Faustov and Galkin (12-05); Karliner and Lipkin (1-06); Chiu and Hsieh (3-06)

tetraquark: $(\bar{c}c)_8(\bar{q}q)_8$

Hogassen, Richard and Sorba (11-05); Buccella, Hogassen, Richard and Sorba (8-06)

hybrid: $(\bar{c}qc)$

Close and Page (9-03); Li (10-04)

In a two body system with short range interactions and an S-wave bound state sufficiently close to threshold

Universal properties depending only on the large scattering length (a)

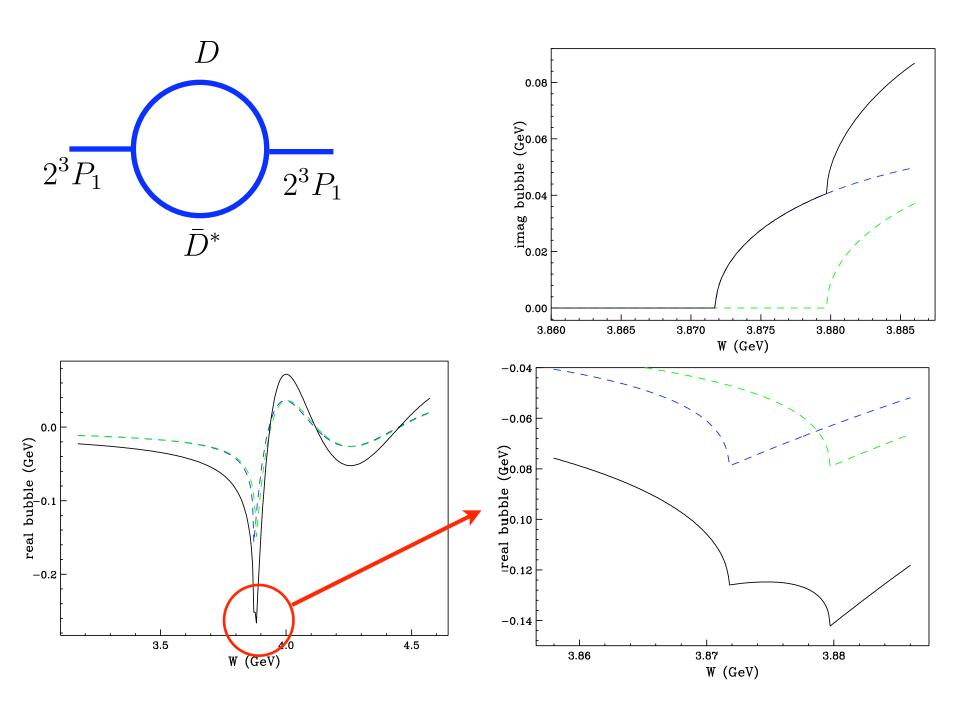
Braaten and Hammer [cond-mat/0410417]

This applies to the X(3872)

Braaten and Kusunoki

If a > 0 one bound state

$$\frac{1}{a} = \gamma_r + i\gamma_i \qquad E_X = \frac{\gamma_r^2}{(2\mu)} \qquad \mu = \frac{M(D^0)M(D^{0*})}{M(D^0) + M(D^{0*})}$$

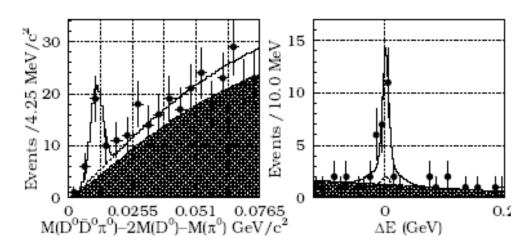

$$\psi(r) = \frac{\exp(-\gamma_r r)}{r} \qquad \sigma(E) = \frac{\pi}{\gamma_r^2 + (\gamma_i + \sqrt{2\mu E})^2}$$

Very large average separation between the charm quark and antiquark

Since this behavior is universal it gives no insight into how the bound state forms

> 7 fm

Strong S-wave coupling for 2P state



For molecular interpretation:

$$\sigma(E) = \frac{\pi}{\gamma_r^2 + (\gamma_i + \sqrt{2\mu E})^2}$$

Fit?

Belle

Lattice calculation:

$$M_{1} = \frac{1}{\sqrt{2}} \left\{ (\bar{\mathbf{q}} \gamma_{i} \mathbf{c}) (\bar{\mathbf{c}} \gamma_{5} \mathbf{q}) - (\bar{\mathbf{c}} \gamma_{i} \mathbf{q}) (\bar{\mathbf{q}} \gamma_{5} \mathbf{c}) \right\}$$

$$M_{2} = (\bar{\mathbf{q}} \gamma_{5} \gamma_{i} \mathbf{q}) (\bar{\mathbf{c}} \mathbf{c})$$

$$M_{3} = \frac{1}{\sqrt{2}} \left\{ (\bar{\mathbf{q}} \gamma_{5} \gamma_{i} \mathbf{c}) (\bar{\mathbf{c}} \mathbf{q}) + (\bar{\mathbf{c}} \gamma_{5} \gamma_{i} \mathbf{q}) (\bar{\mathbf{q}} \mathbf{c}) \right\}$$

$$M_{4} = (\bar{\mathbf{c}} \gamma_{5} \gamma_{i} \mathbf{c}) (\bar{\mathbf{q}} \mathbf{q})$$

Chiu and Hsieh [hep-lat/0603207]

$$M = 3890 \pm 30 \text{ MeV}$$

V dependence fits single meson

$X_4(x) = \frac{1}{\sqrt{2}} \left\{ (\mathbf{q}^T C \gamma_i \mathbf{c})_{xa} (\bar{\mathbf{q}} C \gamma_5 \bar{\mathbf{c}}^T)_{xa} - (\bar{\mathbf{q}} C \gamma_i^T \bar{\mathbf{c}}^T)_{xa} (\mathbf{q}^T C \gamma_5 \mathbf{c})_{xa} \right\}$

Much work remains - quenched; single lattice spacing

Options for Y(4260) (62 papers)

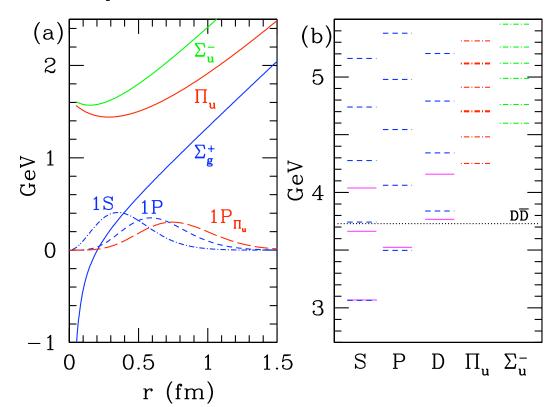
hybrid: $(\bar{c}gc)$

Close and Page (7-05); Kou and Pene (7-05); Zhu (7-05); Juge, O'Cais, Oktay, Peardon and Ryan (10-05); Luo and Liu (12-05); Chiu and Hsieh (12-05); Swanson (9-05, 1-06); Barnes (10-05); Eichten, Lane and Quigg (11-05); S. Godfrey (5-06); Buisseret and Mathieu (7-06);

threshold effect:

Beveren and Rupp (5-06); Rosner (8-06)

tetraquark: $(\bar{c}q)_1(\bar{q}c)_1$, $(\bar{c}\bar{q})_3(qc)_{\bar{3}}$, or $(\bar{c}c)_8(\bar{q}q)_8$ Liu, Zeng and Li, (7-05); Bigi, Maiani, Piccinini, Polosa and Riquer (10-5); Yuan, Wang and Mo (11-05); Ebert, Faustov and Galkin (12-05); Maiani, Riquer, Piccinini and Polosa (3-06); Stancu (7-06); Cui, Chen, Deng and Zhu (7-06); Buccella, Hogassen, Richard and Sorba (8-06)


Y(4260)

Molecular state - Unlikely

Channel	Threshold Energy	Width	
$D_s^{*+}D_s^{*-}$	4223.8	-	P wave
$D\bar{D}_1(3/2^+)$	4286.5	20.3(1.7)	D wave
$D\bar{D}_1(1/2^+)$	4306(32)	329(76)	S wave
$D\bar{D}_2(3/2^+)$	4327.5	43.8(2.0)	D wave
$D^*\bar{D}_0(1/2^+)$	4315(36)	276(66)	D wave

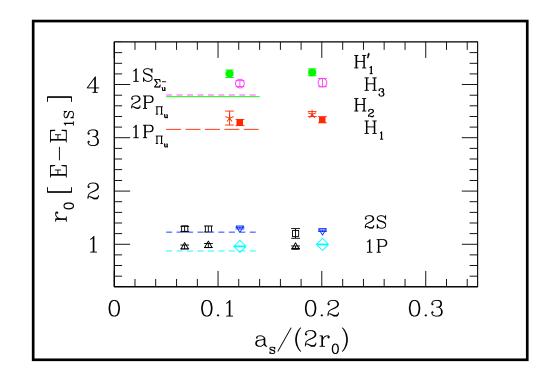
Threshold effects - Needs more modeling

Hybrid - Attractive

Close and Page [hep-ph/0507199]

Zhu [hep-ph/0507025]

Charmonium

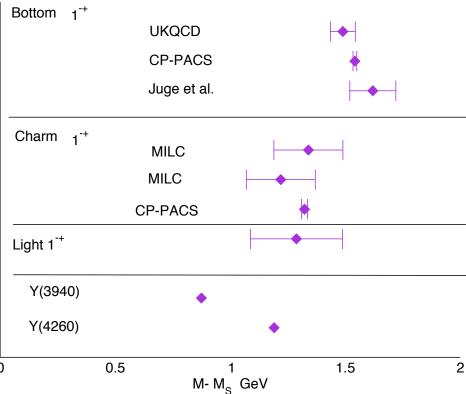

Juge, Kuti, Morningstar [nucl-th/0307116]

Expect triplet partners

J^{PC}		Degeneracies	Operator
0-+	S wave	1	$\chi^{\dagger} (\mathbf{D}^2)^p \ \psi$
1+-	P wave	$0^{++}, 1^{++}, 2^{++}$	$\chi^{\dagger}m{D}\psi$
1	H_1 hybrid	$0^{-+}, 1^{-+}, 2^{-+}$	$oldsymbol{\chi}^\dagger oldsymbol{B}(oldsymbol{D}^2)^p \psi$
1++	H_2 hybrid	$0^{+-}, 1^{+-}, 2^{+-}$	$\chi^{\dagger} \ \pmb{B} \times \pmb{D} \ \psi$
0_{++}	H_3 hybrid	1+-	$\chi^{\dagger} \; \boldsymbol{B} \cdot \boldsymbol{D} \; \psi$

Quenched Spectrum

How many narrow?


Lattice calculations:

M - M_s mass splitting

(M_S is spin averaged mass)

$$M(1^{-+}) = M(1^{--})$$
 (leading order in $1/m_c$)

McNeile review **ICHEP 2006**

Two direct calculations: Y(4260):

Chiu and Hsieh [hep-lat/05 | 2029]

consistent with D^*D_{p0} molecule: 4238(31)(57) not hybrid ~4500

Luo and Liu [hep-lat/05 | 2044]

consistent with hybrid: 4379(149)

Analog States Above Bottom Threshold

NRQCD and HQS allow detailed predictions for the scaling behavior in heavy quark mass.

- $X_c(3872)$ -> $X_b(10604)$ New state present for threshold effect, molecular and other four quark explanations. Isospin violation likely small Decay modes modified: B^* -> $B \gamma$, nearest $^3P_1(b\bar{b})$ state below threshold, etc.
- Y_c(4260) -> Y_b -- Mass depends on interpretation
 Hybrid Scaling of SE with effective potential fixed
 Threshold state shifts with threshold values.
- Observable at hadron colliders?

SUMMARY

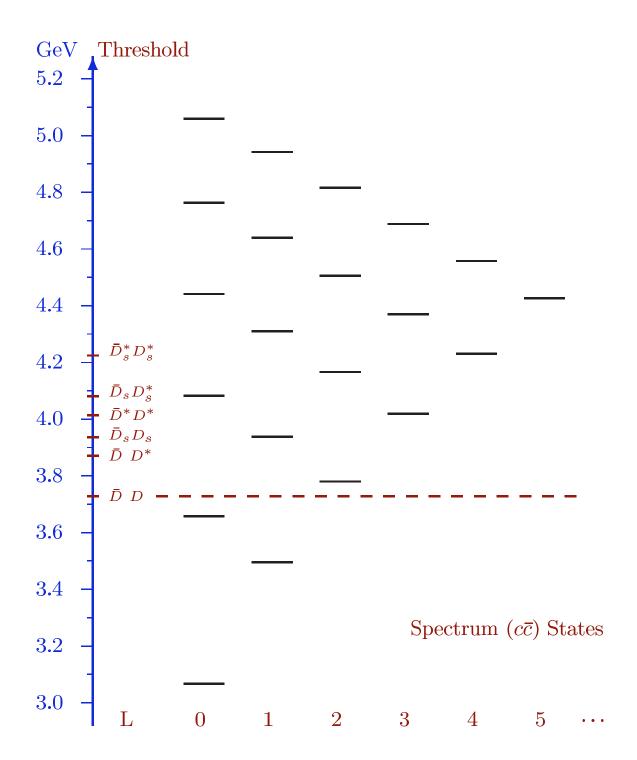
- Narrow heavy-heavy states:
 - The 2^3P_2 and 3^1S_0 charmonium states likely found.
 - All three remaining low-lying L=2 charmonium states are narrow: 1^3D_2 , 1^1D_2 , 1^3D_3
 - A proper calculation for the masses and decay rates of these states must include the large effects from nearby (real/virtual) open charm decay channels.
 - Detailed predictions for masses, mixings and decays using the CCCM give sensible results and can be used to guide the identification of other missing charmonium states.

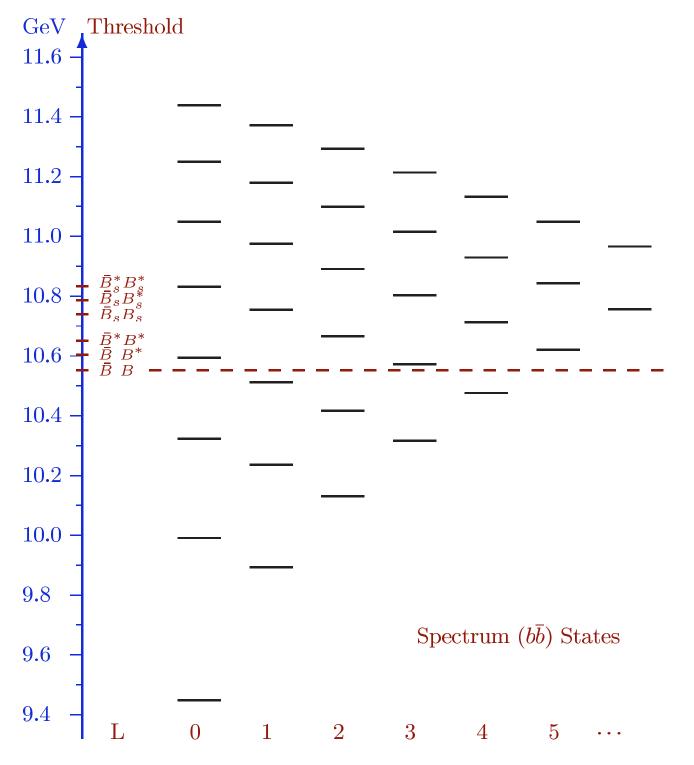
- QCD in all its richness:
 - The two states: X(3872) and Y(4260) do not fit gracefully in any simple charmonium interpretation.
- If X(3872) is a molecular state: Possible analogy states in $b\bar{b}$ system Possible analogy states near other S-wave thresholds.
- If Y(4260) is a hybrid state:
 0⁻⁺, I⁻⁺ and 2⁻⁺ nearby states.
 Need lattice calculations.
- Need improved theoretical tools to study QCD at threshold.

Backup Slides

Heavy-Light Predictions

TABLE I: The heavy-light spectrum compared to experiment. We report the difference between the excited state masses and the ground state (D or B) in each case. We have assumed that $\Delta M(m_c) = \Delta M(m_b) = \Delta M(\infty) = 349 \text{ MeV}$.


charmed mes	on masses [MeV]	bottom meson	n masse	es [MeV]
	model experiment		model	experiment
$D^{*0} - D^0$	142 [a] 142.12 ± 0.07	$B^{*0} - B^0$	46 [a]	45.78 ± 0.35
$D^{*+} - D^+$	141 [a] 140.64 ± 0.10		46 [a]	45.78 ± 0.35
$D_s^{*+} - D_s^+$	144 [a] 143.8 ± 0.41	$B_s^{*+} - B_s^+$	47 [a]	47.0 ± 2.6
$D^0(0^+) - D^0$	349	$B^0(0^+) - B^0$	349	
$D^{+}(0^{+})^{-}D^{+}$	349	$B^{+}(0^{+})^{-}B^{+}$	349	
$D_s^+(0^+)^-D_s^+$	$349 [a] 349 \pm 1.3 [b]$	$B_s^+(0^+)^-B_s^+$	349	
$D^0(1^+) - D^0(0^+)$	142	$B^0(1^+) - B^0(0^+)$	46	
$D^{+}(1^{+})^{-}D^{+}(0^{+})$	141	$B^{+}(1^{+})^{-}B^{+}(0^{+})$	46	
$D_s^+(1^+)^-D_s^+(0^+)$	144	$B_s^+(1^+)^-B_s^+(0^+)$	47	


[a] Experimental input to model parameters fit. [b] BaBar result [1].

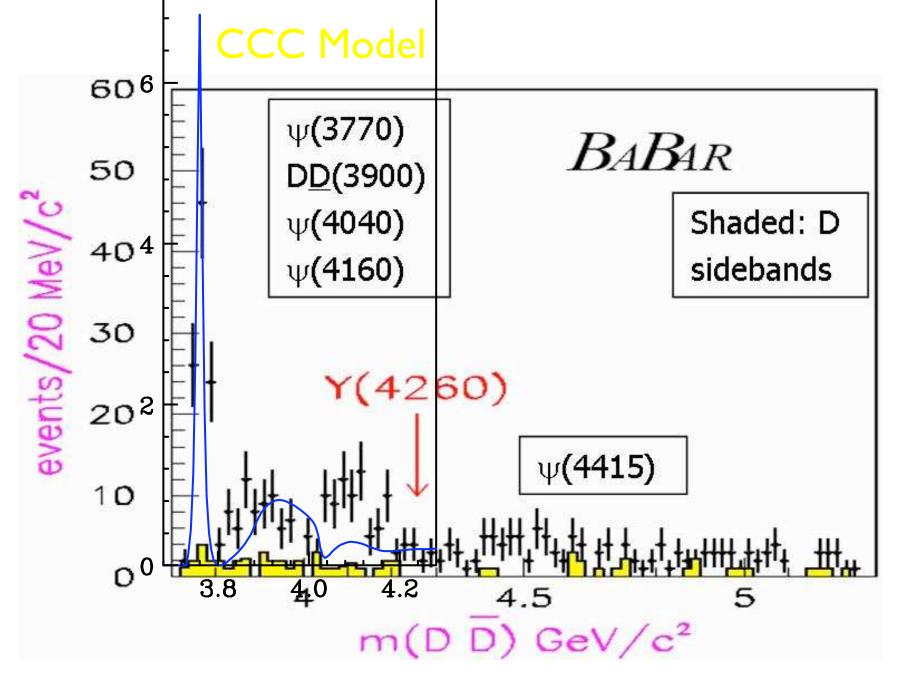
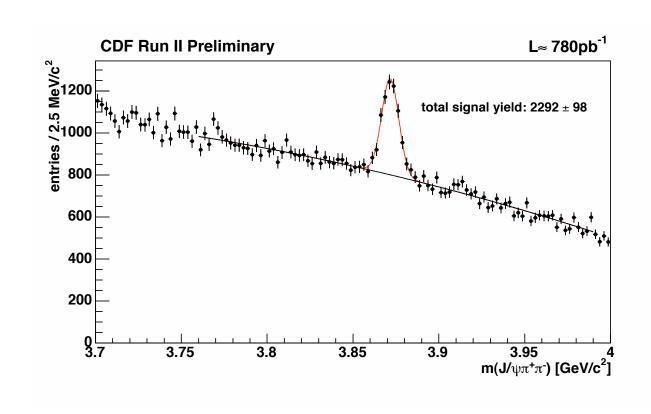

W. Bardeen, C. Hill, E.E. [Phys. Rev. D68, 054024 (2003)]

TABLE II: The predicted hadronic and electromagnetic transistion rates for narrow $j_l^P = 1/2^-(1S)$ and $j_l^P = 1/2^+(1P)$ heavylight states. "Overlap" is the reduced matrix element overlap integral; "dependence" refers to the sensitive model parameters, as defined in the text. We take $G_A = 1$ and extract g_A from a fit to the D^{+*} total width. Note that the $\overline{c}s$ transitions are sensitive to $r_{\overline{c}s}$; if we implement the observed ratio of branching fractions $(D_s(1^-) \to D_s(0^-)\pi^0)/\Gamma(D_s(1^-) \to D_s(0^-)\gamma) = 0.062 \pm 0.026$ then the E1 radiative transitions for the $\overline{c}s$ system should be reduced by a factor of ~ 3

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	£ 2.5)%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.4)% \(\text{\tinx}\text{\tinx}\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinit}\xi}\\\ \text{\tinit}\xi}\\\ \text{\text{\text{\text{\tinit}\xi}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinit}\xi}\\ \text{\texi\tin\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\text{\texi}\text{\texi}\text{\texi}\tint{\text{\texi}\text{\texi}\text{\texi}\text{\text{\texi}\text{\texi}\text{\texi}\t
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	± 0.5)% ± 0.5)% 2 ± 2.5)%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	± 0.5)% ± 0.5)% 2 ± 2.5)%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	£ 0.5)% 2 £ 2.5)%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 \(\frac{2.5}{\%}\)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	£ 2.5)%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \frac{\text{total}}{(c\overline{s})} 0^{+} \to 1^{-} + \gamma 212 \qquad 2.794 r_{\overline{c}s} \qquad 1.74 $	2.5)%
$(c\overline{s}) 0^+ \to 1^- + \gamma 212 \qquad 2.794 r_{\overline{c}s} \qquad 1.74$	
$0^+ \to 0^- + \pi^0 297$ $G_A \delta_{\eta \pi 0}$ 21.5	
total 23.2	
$(c\overline{s})$ 1 ⁺ \rightarrow 0 ⁺ + γ 138 0.992 $r'_{\overline{c}s}$ 2.74	
$1^+ \to 0^+ + \pi^0$ 48 $g_A \delta_{\eta \pi 0}$ 0.0079	
$1^{+} \rightarrow 1^{-} + \gamma$ 323 2.638 $r_{\overline{c}s}$ 4.66	
$1^+ \to 0^- + \gamma$ 442 2.437 $r_{\overline{c}s}$ 5.08 $1^+ \to 1^- + \pi^0$ 298 $G_A \delta_{n\pi0}$ 21.5	
11 1/10	
$1^+ \to 0^- + 2\pi \ 221$ $g_A \delta_{\sigma_1 \sigma_3}$ 4.2 total 38.2	
(1)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
(17)	
$(bd) 1^- \rightarrow 0^- + \gamma 46 \qquad 0.998 r_{\overline{b}d} \qquad 0.24$ $total \qquad \qquad 0.24$	
$(b\overline{s}) 1^- \to 0^- + \gamma 47 \qquad 0.998 r_{\overline{b}s} \qquad 0.15$	
total 0.15	
$(b\overline{s}) 0^+ \to 1^- + \gamma 293 2.536 r_{\overline{b}s} $ 58.3	
$0^+ \to 0^- + \pi^0 297 \qquad \qquad G_A \delta_{\eta \pi 0} \qquad 21.5$	
total 79.8	
$(b\overline{s})$ 1 ⁺ \to 0 ⁺ + γ 47 0.998 $r'_{\overline{b}s}$ 0.061	
$1^+ \to 1^- + \gamma 335 \qquad 2.483 r_{\overline{b}s} \qquad 56.9$	
$1^+ \to 0^- + \gamma$ 381 2.423 $r_{\overline{b}s}^{\circ \circ}$ 39.1	
$1^+ \to 1^- + \pi^0$ 298 $G_A \delta_{\eta \pi 0}$ 21.5	
$1^+ \to 0^- + 2\pi \ 125$ $g_A \delta_{\sigma_1 \sigma_3} = 0.12$	
total 117.7	



$$\frac{\mathcal{B}(Y(4260) \to D\bar{D})}{\mathcal{B}(Y(4260) \to \pi^{+}\pi^{-}J/\psi)} < 7.6 @ 95\% \text{ C.L.}$$

Look for other ID states and DDbar threshold

